Spectral properties of non-selfadjoint Sturm-Liouville operator equation on the real axis


Creative Commons License

MUTLU G., KIR ARPAT E.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.49, sa.5, ss.1686-1694, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 49 Sayı: 5
  • Basım Tarihi: 2020
  • Doi Numarası: 10.15672/hujms.577991
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.1686-1694
  • Anahtar Kelimeler: Sturm-Liouville operator equation, eigenvalues, spectral singularities, operator coefficient, non-selfadjoint operators, MATRIX, SCHRODINGER, THEOREMS, JACOBI
  • Gazi Üniversitesi Adresli: Evet

Özet

In this paper, we analyze the non-selfadjoint Sturm-Liouville operator L defined in the Hilbert space L-2(R, H) of vector-valued functions which are strongly-measurable and square-integrable in R. L is defined