Energy-exergy and sustainability analysis of a PV-driven quadruple- flow solar drying system


Khanlari A., SÖZEN A., Afshari F., Tuncer A. D.

RENEWABLE ENERGY, cilt.175, ss.1151-1166, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 175
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.renene.2021.05.062
  • Dergi Adı: RENEWABLE ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, Compendex, Environment Index, Geobase, Greenfile, Index Islamicus, INSPEC, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1151-1166
  • Anahtar Kelimeler: Quadruple-flow, Solar dryer, Energy-exergy, Sustainability, CFD, PHASE-CHANGE MATERIAL, AIR-HEATER, PERFORMANCE EVALUATION, THERMAL PERFORMANCE, CURCUMA-LONGA, DRYER, COLLECTOR, FINS, LEAVES, PLATE
  • Gazi Üniversitesi Adresli: Evet

Özet

Solar energy as a clean energy source is widely investigated to find out the effective mechanisms to meet a large part of energy demand in the near future. In the present research, a square-spiral finned quadruple-flow solar collector assisted dryer has been designed, and numerically compared with finless collector. Main aim of the current work is to develop and analyze a sustainable solar drying system. In this study, different from similar works, heat transfer surface area has been enhanced by using square spiral geometry which is an unconventional fin type. According to the numerical findings, a finned quadruple-flow collector which found more efficient has been manufactured, integrated with a drying chamber and performance experiments have been conducted. In the manufactured solar dryer, a PV panel has been used to run utilized fan. CFD simulation and empirical outcomes of this research exhibited the successful design of finned quadruple-flow collector. Experimentally obtained average efficiency of quadruple-flow collector varied in the range of 73.27-78.19%. Also, mean exergy efficiency of drying chamber was found between 44.16 and 58.38%. Sustainability index and waste exergy ratio values as important factors were attained between the ranges of 1.93-2.73 and 0.52-0.56, respectively. (c) 2021 Elsevier Ltd. All rights reserved.