A unified presentation of some families of multivariable polynomials


Erkus E., Srivastava H. M.

INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, cilt.17, sa.4, ss.267-273, 2006 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 4
  • Basım Tarihi: 2006
  • Doi Numarası: 10.1080/10652460500444928
  • Dergi Adı: INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.267-273
  • Anahtar Kelimeler: multilinear and mixed multilateral generating functions, Chan-Chyan-Srivastava multivariable polynomials, explicit representation, Pochhammer symbol, Lagrange-Hermite polynomials, Lagrange polynomials, Srivastavas theorem, addition formulas, (differential) recurrence relations, LAGRANGE POLYNOMIALS
  • Gazi Üniversitesi Adresli: Hayır

Özet

In this paper, we present a systematic investigation of a unification (and generalization) of the Chan-Chyan-Srivastava multivariable polynomials and the multivariable extension of the familiar Lagrange-Hermite polynomials. We derive various classes of multilinear and mixed multilateral generating functions for these unified polynomials. We also discuss other miscellaneous properties of these general families of multivariable polynomials.