Effect of Chlorhexidine and Benzalkonium Chloride on the Long-term Push-out Bond Strength of Fiber Posts


Hazar A., AKGÜL S., Hazar E.

Nigerian Journal of Clinical Practice, cilt.26, sa.9, ss.1242-1248, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Sayı: 9
  • Basım Tarihi: 2023
  • Doi Numarası: 10.4103/njcp.njcp_434_22
  • Dergi Adı: Nigerian Journal of Clinical Practice
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MEDLINE
  • Sayfa Sayıları: ss.1242-1248
  • Anahtar Kelimeler: Benzalkonium chloride, bond sthrength, chlorhexidine, fiber post
  • Gazi Üniversitesi Adresli: Evet

Özet

Background and Aim: Fiber posts are widely used in endodontically treated teeth with extensive loss of coronal structure. The purpose of this study was to investigate immediate and the long-term effects of chlorhexidine (CHX) and benzalkonium chloride (BAC) application, on the push-out bond strength of fiber posts. Material and Methods: Sixty mandibular premolars were decoronated, and root canal treatment was performed. After post space preparation, the specimens were divided into three groups according to the post space-surface pretreatment (n = 20); no surface treatment (control group - Group 1), 2% CHX application (Group 2), and 1% BAC application (Group 3). A self-curing adhesive cement and an etch and rinse adhesive were used for the cementation of posts. Three sections (one cervical, one middle, and one apical) of 1 mm thickness were prepared from each specimen. A push-out test was performed immediately on the half of the specimen sections (n = 10). The other half of the specimen sections were subjected to 20.000 thermal cycles before applying the push-out test (n = 10). The failure mode of each specimen was observed under a stereomicroscope at ×40 magnification. Results: The data were analyzed by one-way analysis of variance (ANOVA), Tukey Honestly significant difference (HSD), and Tamhane tests (P = 0.05). The cervical thirds displayed the highest, and the apical thirds showed the lowest values in all groups (P < 0.05), except the control-aged group (P = 0.554). The aged control groups' values were found to be significantly lower than the aged CHX and BAC groups (P < 0.001). Aging significantly reduced the bond strength values of specimens in control groups (P < 0.001). However, aging did not significantly affect the push-out bond strength values of CHX and BAC groups (P > 0.050). The failure types were adhesive between the post and cement (type 1) in all groups, except control-aged group (type 2). Conclusion: The application of 2% chlorhexidine or 1% BAC may be an essential step that can be taken to preserve the bond strength of fiber posts.