Does Fipronil Affect on Aquatic Organisms? Physiological, Biochemical, and Histopathological Alterations of Non-Target Freshwater Mussel Species


Arslan P., Gunal A. Ç.

Water (Switzerland), cilt.15, sa.2, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/w15020334
  • Dergi Adı: Water (Switzerland)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Geobase, INSPEC, Pollution Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: mussels, LC50, AOPP, glutathione, total hemocyte counts, histology
  • Gazi Üniversitesi Adresli: Evet

Özet

Fipronil is widely used against insects in agriculture and ectoparasites in domestic areas and veterinary medicine. However, fipronil may influence non-target species as a result of the contamination of aquatic ecosystems. The present study aimed to investigate the acute and sublethal effects of fipronil in freshwater mussels (Unio delicatus), a non-target species, with physiological, antioxidant action mechanisms and histopathological observations. The 96-h LC50 value of fipronil was found to be 2.64 (1.45–4.56) mg/L. Sublethal concentrations were applied at 1/10 and 1/5 of 96-h LC50 as 0.264 mg/L and 0.528 mg/L for 48-h and 7-d. Haemolymph samples, digestive gland and gill tissues of mussels were taken after exposure times. While the Total Haemocyte Counts decreased in 48-h of exposure, it was only high at 0.264 mg/L fipronil-exposed for 7-d (p < 0.05). While glutathione values in digestive glands and gills were higher in the fipronil applied groups (p < 0.05), the AOPP values were only higher in the digestive glands at 7-d of exposure (p < 0.05). Moreover, fipronil caused histopathological alterations on gills and digestive glands. These things considered, the principal component analysis revealed that the most pronounced changes in the antioxidant action mechanisms were caused by the fipronil exposure. These results show that sublethal concentrations of fipronil are toxic to freshwater mussels.