Prediction of breakdown voltages in N-2+SF6 gas mixtures


Tezcan S. S. , Dincer M. S. , Hiziroglu H. R.

Annual Conference on Electrical Insulation and Dielectric Phenomena, Missouri, Amerika Birleşik Devletleri, 15 - 18 Ekim 2006, ss.222-225 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Doi Numarası: 10.1109/ceidp.2006.312101
  • Basıldığı Şehir: Missouri
  • Basıldığı Ülke: Amerika Birleşik Devletleri
  • Sayfa Sayıları: ss.222-225

Özet

This study proposes artificial neural networks (ANN) to predict the breakdown voltages in N-2+SF6 gas mixtures. The proposed ANN consists of one input layer, two hidden layers and one output layer, which is essentially the predicted breakdown voltage. In order to train the ANN, the experimental data available in literature for N-2+SF6 have been used. When compared with the experimental data the average relative errors on predicted breakdown voltages are found to be less than +/- 5% for training as well as for testing in all cases using the proposed ANNs. Since the average errors are less than 5%, it is recommended to use the proposed ANNs to predict the breakdown voltages.