Korovkin-type approximation properties of bivariate q-Meyer-Konig and Zeller operators


Dogru O., Gupta V.

CALCOLO, cilt.43, sa.1, ss.51-63, 2006 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 43 Sayı: 1
  • Basım Tarihi: 2006
  • Doi Numarası: 10.1007/s10092-006-0114-8
  • Dergi Adı: CALCOLO
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.51-63
  • Anahtar Kelimeler: positive linear operators, bivariate Korovkin theorem, bivariate modulus of continuity, bivariate Lipschitz class, q-integers
  • Gazi Üniversitesi Adresli: Hayır

Özet

In the present paper, a bivariate generalization of the Meyer-Konig and Zeller operators based on the q-integers is constructed. Approximation properties and rate of convergence of these operators are established with the help of a Korovkin theorem for bivariate functions and a Korovkin-type theorem given by Heping [81 and Volkov [ 14] respectively.