Approximation by operators Involving ∆h-Gould-Hopper Appell polynomials


Creative Commons License

Yilmaz B. Z. S., İÇÖZ G.

Turkish Journal of Mathematics, cilt.48, sa.3, ss.423-447, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.55730/1300-0098.3517
  • Dergi Adı: Turkish Journal of Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.423-447
  • Anahtar Kelimeler: Appell polynomials, Kantorovich operators, Szász operators, Voronovskaja-type theorem
  • Gazi Üniversitesi Adresli: Evet

Özet

The present paper deals with the approximation properties of the linear positive operators, including ∆h-Gould-Hopper Appell polynomials. We investigate some theorems for convergence of the operators and their approximation degrees with the help of the classical approach, Peetre’s K-functional, Lipschitz class and Voronovskaja-type theorem. In the last section of the paper, we introduce the Kantorovich form of the operators and examine the approximation degree.