ONCOLOGY LETTERS, cilt.12, sa.4, ss.2463-2474, 2016 (SCI-Expanded)
The activation of the phosphatidylinositol-3 kinase/v-akt murine thymoma viral oncogene homolog (Akt) and mitogen activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathways are implicated in the majority of cancers. Selective inhibition of Akt and ERK represents a potential approach for cancer therapy. Therefore, the present study aimed to investigate the apoptotic and anti-proliferative effects of the novel and selective Akt inhibitor 4-amino-5,8-dihydro-5-oxo-8--D-ribofuranosyl-pyrido[2,3-d]pyrimidine-6-carboxamide (API-1) and selective ERK1/2 inhibitor FR180204 (FR) alone and in combination on colorectal cancer (CRC) cells (DLD-1 and LoVo). In addition, the effects of API-1 and FR on Akt and ERK signaling pathways were also investigated. The effects of the agents on DLD-1 and LoVo cells were evaluated in terms of cell viability, cytotoxicity, DNA synthesis rate, DNA fragmentation and caspase-3 activity levels. In addition, quantitative reverse transcription-polymerase chain reaction and western blot analysis were performed to examine relevant mRNA and protein levels. The present study observed that the combination of FR with API-1 resulted in significant apoptosis and cytotoxicity compared with any single agent alone in a time-dependent manner in these cells. Also, treatment with FR and API-1 in combination decreased the expression levels of B-cell lymphoma-2 (BCL2), Bcl-2-like1, cyclin D1 and cMYC, and increased the expression levels of BCL2-associated X protein and BCL2 antagonist/killer via phosphorylated Akt and phosphorylated ERK1/2 downregulation. The combination of Akt and ERK1/2 inhibitors resulted in enhanced apoptotic and anti-proliferative effects against CRC cells. The present study hypothesizes that the combination of FR and API-1 in CRC cells may contribute toward potential anti-carcinogenic effects. Additional analyses using other cancer cell lines and animal models are required to confirm these findings in vitro and in vivo.