An Optimization Approach for Robust Crew Pairing in Airline Operations: An Airline Company Application


ÖZKAN AKSU E., TEMİZ İ.

JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, vol.24, no.2, pp.417-429, 2021 (ESCI) identifier identifier

Abstract

In order to use the pricy resources effectively and efficiently in airline operations, in the present competitive environment, schedules must be formed with a proactive approach. Possible delays and uncertainties must be taken into consideration during the planning phase and more robust schedules must be organized for uncertainties. In this study, crew pairing problem that is first step of the crew scheduling problem is handled at two stages. At the first stage, the problem is solved with a set partitioning formulation for two different scenarios where the crew number is minimized, and efficiency is maximized, and different solution alternatives are proposed for the decision maker. Before the problem is modelled, it is purified from the complicated constraint structure and all the possible pairings containing flight legs are created. At the second stage, it is aimed at forming a pairing set which is less affected by delays. In the study based on real data collected from an airline company in Turkey, the past delay values are analyzed, and an average delay value is calculated for each flight leg. With these calculated delay values, propagated delays are modelled. The model, which is formed to choose the best pairing set including all the flight legs, is analyzed with an approach based on bi-criteria optimization. The objectives are combined with the weighted sum method and pairings with optimal cost and less propagated delay are obtained for different weight values. With the proposed methodology, it is observed that the problem can be solved in reasonable operation time.