Statistical approximation by generalized Meyer-Konig and Zeller type operators


Dogru O., Duman O., Orhan C.

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, cilt.40, sa.3, ss.359-371, 2003 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40 Sayı: 3
  • Basım Tarihi: 2003
  • Doi Numarası: 10.1556/sscmath.40.2003.3.9
  • Dergi Adı: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.359-371
  • Anahtar Kelimeler: A-statistical convergence, positive linear operators, the Korovkin type theorem, the Meyer-Konig and Zeller operators, Peetre's K-functional, STRONG CONVERSE INEQUALITY, BERNSTEIN POWER-SERIES, CONVERGENCE
  • Gazi Üniversitesi Adresli: Hayır

Özet

In the present paper, we study a Kantorovich type generalization of Agratini's operators. Using A-statistical convergence, we will give the approximation properties of Agratini's operators and their Kantorovich type generalizations. We also give the rates of A-statistical convergence of these operators.