A new optimization model for design of traditional cockpit interfaces

Senol M. B.

AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol.92, no.3, pp.404-417, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 92 Issue: 3
  • Publication Date: 2020
  • Doi Number: 10.1108/aeat-04-2019-0068
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Compendex, INSPEC
  • Page Numbers: pp.404-417
  • Keywords: Aircraft cockpit design, Layout optimization, Human vehicle interface, Human factors, Ergonomics, Safety, Continuous facility layout models, Multi criteria decision making, AREA FACILITY LAYOUT, QUADRATIC ASSIGNMENT PROBLEM, COLONY OPTIMIZATION, NEXT-GENERATION, TABU SEARCH, ALGORITHM, FAILURE
  • Gazi University Affiliated: Yes


Purpose Real flight is cognitively demanding; accordingly, both indicators and display panel layout should be user-friendly to improve pilot-aircraft interaction. Poor pilot-interface interactions in aircrafts could result in accidents. Although a general reason of accidents is improper displays, relatively few studies were conducted on interfaces. This study aims to present an optimization model to create intuitively integrated user-friendly cockpit interfaces. Design/methodology/approach Subjectivity within most usability evaluation techniques could bring about interface design problems. A priori information about indicator's possible locations may be available or unavailable. Thus different analytical approaches must be applied for modifications and new interface designs. Relative layout design (RLD) model was developed and used in new interface designs to optimize locations of indicators. This model was based on layout optimization and constructed in accordance with design requirements, ergonomic considerations with the pilot preferences. RLD model optimizes interface design by deploying indicators to the best locations to improve usability of display panel, pilot-aircraft interaction and flight safety. Findings Optimum interfaces for two problem instances were gathered by RLD model in 15.77 CPU(s) with 10 indicators and 542.51 CPU(s) with 19 indicators. A comparison between relative and existing cockpit interfaces reveals that locations of six navigation and four mechanical system indicators are different. The differences may stem from pilots' preferences and relativity constraints. Both interfaces are more similar for the central part of the display panel. The objective function value of relative interface design (Opt: 527938) is far better than existing interface (737100). The RLD model improved usability of existing interface (0.61 considering decrease in the objective function values from 737100 to 527938. Originality/value Originality and impact of this study related to development and employment of a new optimization model (RLD) on cockpit interface design for the first time. Engineering requirements, human factors, ergonomics and pilots' preferences are simultaneously considered in the RLD model. The subjectivity within usability evaluation techniques could be diminished in this way. The contributions of RLD model to classical facility layout models are relativity constraints with the physical constrictions and ergonomic objective function weights. Novelty of this paper is the development and employment of a new optimization model (RLD) to locate indicators.