On Einstein-type contact metric manifolds


Creative Commons License

Vanlı A.

American Mathematical Society, ss.1, Michigan, 2022

  • Yayın Türü: Bilirkişi Raporu / Uzmanlık Raporu
  • Basım Tarihi: 2022
  • Basıldığı Şehir: Michigan
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Gazi Üniversitesi Adresli: Evet

Özet

A smooth Riemannian manifold (Mn,g) is called an Einstein-type manifold if there exists a non-constant smooth function f:MnR that solves fRicg=2f+σg, where σ is a smooth function, Ricg is the Ricci tensor of g and 2f denotes the Hessian of f.
  In this article, the authors prove that any K-contact manifold admitting an Einstein-type metric is isometric to a unit sphere. In addition, they show that any non-Sasakian (k,μ)-contact metric manifold M2n+1 for n>1 admitting an Einstein-type metric is locally isometric to the product of a Euclidean space Rn+1 and a sphere Sn of curvature 4, and M2n+1 is flat when n=1. Moreover, they prove that a similar conclusion also holds for a contact metric manifold admitting an Einstein-type metric with zero radial Weyl curvature and satisfying a commutativity condition.