Three-Dimensional Micromechanical Modeling of Martensite Particle Size Effects on the Deformation Behavior of Dual-Phase Steels


Creative Commons License

ÇAVUŞOĞLU O., Toros S.

MATERIALS, cilt.17, sa.20, 2024 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 20
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/ma17205004
  • Dergi Adı: MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Gazi Üniversitesi Adresli: Evet

Özet

The objective of this study was to examine the influence of martensite particle size on the formation of stress and strain in microstructures of dual-phase steels. In order to achieve this objective, the 3D representative volume element (RVE) method was utilized. Particle size distributions were obtained from the microstructures of DP600 and DP1000 dual-phase steels as they actually exist. Virtual dual-phase steel microstructures were generated according to the above distribution and subsequent validation analyses were performed. In the subsequent phase, microstructures of varying martensite particle sizes (1 mu m, 1.98 mu m, 3 mu m for DP600 and 1.15 mu m, 2 mu m, 3 mu m for DP1000) were formed, and the effects of particle size on deformation behavior under tensile loads were determined. The findings indicated that an increase in martensite particle size resulted in a reduction in tensile strength, accompanied by an increase in deformation amount.