Cellulosic tent fabric coated with boron nitride nanosheets


YARAŞ A., ER E., ÇELİKKAN H., DİŞLİ A., Alicilar A.

JOURNAL OF INDUSTRIAL TEXTILES, cilt.45, sa.6, ss.1689-1700, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 6
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1177/1528083715569375
  • Dergi Adı: JOURNAL OF INDUSTRIAL TEXTILES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1689-1700
  • Anahtar Kelimeler: Cellulosic fabric, boron nitride nanosheets, flame retardant, water repellent, FLAME-RETARDANT
  • Gazi Üniversitesi Adresli: Evet

Özet

This study concerns with the preparation of flame retardant and hydrophobic cellulosic fabric by using hexagonal boron nitride nanosheets (h-BNNs). h-BNNs were prepared from hexagonal boron nitride (h-BN) using two different exfoliation methods. These methods include direct sonication (aq-BNNs) and sonication after pretreatment with Hummers method (Hum-BNNs) in aqueous medium. The characterization of h-BNNs was carried out by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), limited oxygen index (LOI), and water contact angle (WCA) analysis. The surface morphologies of h-BNNs were investigated via atomic force microscope (AFM). The coating with the h-BNNs was proved by scanning electron microscopy (SEM). Hummers method is considered to be more effective reaction by gained functionality to h-BN structure. In this way, it will easily provide physical or chemical interaction between the functionalized h-BN and cellulosic structure. A nanometric-sized large layers and slightly functionalized h-BNNs were obtained using Hummers method. Hum-BNNs dispersions were sprayed onto the surface of cellulosic tent fabric to show flame retardance properties. However, it was observed that the flame retardant effect of nanolayered h-BNNs prepared by both methods were insufficient. In addition, ultrahydrophobic surfaces were almost obtained using aq-BNNs and Hum-BNNs. It was conclusively proposed that a few amounts of Hum-BNNs can be used as hydrophobic coating for cellulosic fabric surface with this way.