Thermoresponsive Polymer Brush-Decorated 3-D Plasmonic Gold Nanorod Arrays as an Effective Plasmonic Sensing Platform


Özkan Hüküm K., Caykara T., Demirel G.

ACS APPLIED POLYMER MATERIALS, cilt.5, ss.4296-4304, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 5
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1021/acsapm.3c00466
  • Dergi Adı: ACS APPLIED POLYMER MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex
  • Sayfa Sayıları: ss.4296-4304
  • Gazi Üniversitesi Adresli: Evet

Özet

Molecular sensing based on plasmonic materials is of great interest not only for basic scientific research but also for real-life applications. For plasmonic sensing, tunable hot-spot generation, in which the electromagnetic field is maximized, plays a key role. Herein, we developed a platform consisting of a thermoresponsive polymer brush with colloidal plasmonic particles and 3-D ordered/vertically aligned gold nanorod (AuNR) arrays for surface-enhanced Raman spectroscopy (SERS) applications. Poly(di(ethylene glycol) methyl ether methacrylate) brushes were synthesized via the interface-mediated reversible addition fragmentation chain transfer polymerization method. 3-D AuNR arrays were also fabricated by the oblique angle physical vapor deposition method. High-density hot-spot generation on the platforms was achieved by reducing the distance between the plasmonic particles and the underlying AuNR array as a result of phase transition of the polymer brushes. The design and optimization of such a platform will pave the way for molecular detection applications in a broad range of fields such as medicine, environmental protection, food safety, and homeland security.