Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/absorbent couples


SÖZEN A., ARCAKLIOĞLU E., Ozalp M.

APPLIED THERMAL ENGINEERING, cilt.25, ss.1808-1820, 2005 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25
  • Basım Tarihi: 2005
  • Doi Numarası: 10.1016/j.applthermaleng.2004.11.003
  • Dergi Adı: APPLIED THERMAL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1808-1820
  • Gazi Üniversitesi Adresli: Evet

Özet

This paper presents a new approach based on artificial neural networks (ANNs) to determine the properties of liquid and two phase boiling and condensing of two alternative refrigerant/absorbent couples (methanol/LiBr and methanol/LiCl). These couples do not cause ozone depletion and use in the absorption thermal systems (ATSs). ANN's are able to learn the key information patterns within multidimensional information domain. ANNs operate such as a 'black box' model, requiring no detailed information about the system. On the other hand, they learn the relationship between the input and the output. In order to train the neural network, limited experimental measurements were used as training data and test data. In this study, in input layer, there are temperatures in the range of 298-498 K, pressures (0.1-40 MPa) and concentrations of 2%, 7%, 12% of the couples; specific volume is in output layer. The back-propagation learning algorithm with three different variants, namely scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM), and logistic sigmoid transfer function were used in the network so that the best approach can find. The most suitable algorithm and neuron number in the hidden layer are found as SCG with 8 neurons. For this number level, after the training, it is found that maximum error is less than 3%, average error is about 1% and R-2 value are 99.999%. As seen from the results obtained the thermodynamic equations for each pair by using the weights of network have been obviously predicted within acceptable errors. This paper shows that values predicted with ANN can be used to define the thermodynamic properties instead of approximate and complex analytic equations. (c) 2004 Elsevier Ltd. All rights reserved.