Position-dependent mass approach and quantization for a torus Lagrangian


Creative Commons License

YEŞİLTAŞ Ö.

EUROPEAN PHYSICAL JOURNAL PLUS, cilt.131, sa.9, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 131 Sayı: 9
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1140/epjp/i2016-16308-y
  • Dergi Adı: EUROPEAN PHYSICAL JOURNAL PLUS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Gazi Üniversitesi Adresli: Evet

Özet

We have shown that a Lagrangian for a torus surface can yield second-order nonlinear differential equations using the Euler-Lagrange formulation. It is seen that these second-order nonlinear differential equations can be transformed into the nonlinear quadratic and Mathews-Lakshmanan equations using the position-dependent mass approach developed by Mustafa (J. Phys. A: Math. Theor. 48, 225206 (2015)) for the classical systems. Then, we have applied the quantization procedure to the nonlinear quadratic and Mathews-Lakshmanan equations and found their exact solutions.