APPLIED SURFACE SCIENCE, cilt.257, sa.3, ss.1015-1020, 2010 (SCI-Expanded)
In this report, ultrahydrophobic poly(lauryl acrylate) [poly(LA)] brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of lauryl acrylate (LA) in N,N-dimethylformamide (DMF) at 90 degrees C. The formation of ultrahydrophobic poly(LA) films, whose thickness can be turned by changing polymerization time, is evidenced by using the combination of ellipsometry, X-ray photoelectron spectroscopy (XPS), grazing angle attenuated total reflectance-Fourier transform infrared spectroscopy (GATR-FTIR), atomic force microscopy (AFM), gel permeation chromatography (GPC), and water contact angle measurements. The SI-ATRP can be conducted in a well-controlled manner, as revealed by the linear kinetic plot, linear evolution of number-average molecular weights ((M) over bar (n)) versus monomer conversions, and the relatively narrow PDI (< 1.28) of the grafted poly(LA) chains. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted poly(LA) films and allowed us to predict a "brushlike" conformation for the chains in good solvent. The poly(LA) brushes exhibited high water contact angle of 163.3 +/- 2.8 degrees. (C) 2010 Elsevier B.V. All rights reserved.