A Simplified Model for Characterizing the Effects of Scattering Objects and Human Body Blocking Indoor Links at 28 GHz


Creative Commons License

Dalveren Y., Alabish A. H., Kara A.

IEEE ACCESS, cilt.7, ss.69687-69691, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 7
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1109/access.2019.2919546
  • Dergi Adı: IEEE ACCESS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.69687-69691
  • Anahtar Kelimeler: 5G, double knife-edge diffraction, environmental blockage, human blockage, millimeter-wave
  • Gazi Üniversitesi Adresli: Hayır

Özet

This paper presents a simple approach to characterize the effects of scattering objects around indoor links at 28 GHz while the link is fully blocked by a human body. The effects of scattering objects nearby the link were studied by conducting measurements with a metallic reflector and the human body. Here, the basic mechanisms of wave propagation, such as reflection and diffraction, were accounted for each scattering object. To predict the attenuation caused by the metallic reflector, a specular reflection model was employed in reflection modeling. In diffraction modeling, on the other hand, the double knife-edge diffraction (DKED) model was exploited to predict the attenuation by the human body. Simulations were then compared with measurements to evaluate the prediction accuracy of the models. Results indicate that the presented simple models work well for indoor links. Therefore, the results of this paper could be extended to model multiple human bodies near the indoor links of fifth generation (5G) systems.