INEQUALITIES AND NUMERICAL RESULTS OF APPROXIMATION FOR BIVARIATE q–BASKAKOV–DURRMEYER TYPE OPERATORS INCLUDING q–IMPROPER INTEGRAL


Yildiz Ozkan E.

Journal of Mathematical Inequalities, cilt.16, sa.2, ss.499-512, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.7153/jmi-2022-16-36
  • Dergi Adı: Journal of Mathematical Inequalities
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH
  • Sayfa Sayıları: ss.499-512
  • Anahtar Kelimeler: q-beta function, q-qamma function, q-improper integral, rate of convergence, Bogel continuity, SEQUENCE
  • Gazi Üniversitesi Adresli: Evet

Özet

© 2022. Journal of Mathematical Inequalities. All Rights Reserved.In this study, we investigate inequalities estimating the error of the approximation of bivariate q-Baskakov-Durrmeyer type operators including q-improper integral. We firstly introduce bivariate q-Baskakov-Durrmeyer type operators including the q-improper integral. We obtain inequalities estimating the error of the approximation for these operators. Later, we introduce generalized Boolean sum (GBS) operators associated to the bivariate q-Baskakov-Durrmeyer type operators including the q-improper integral, and we give an inequality estimating the error of the approximation for the GBS operators. Lastly, we present numerical results of error estimations for certain functions with the help of maple software.