Histological Evaluation of the Effect of Concentrated Growth Factor on Bone Healing


DURMUŞLAR M. C. , BALLI U., DEDE F. Ö. , MISIR A. F. , BARIŞ E. , KÜRKÇÜ M., ...Daha Fazla

JOURNAL OF CRANIOFACIAL SURGERY, cilt.27, sa.6, ss.1494-1497, 2016 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 27 Konu: 6
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1097/scs.0000000000002873
  • Dergi Adı: JOURNAL OF CRANIOFACIAL SURGERY
  • Sayfa Sayıları: ss.1494-1497

Özet

Objectives:The aim of this study was to evaluate the effects of concentrated growth factors (CGF) on the healing of peri-implant bone defects in an animal model.Study Design:Twenty 4-month-old New Zealand White rabbits, each with an average weight of 3.5kg, were used in this blinded, prospective, experimental study. Two implants were placed and 2 peri-impant defects were prepared in each rabbit tibia. Bone defects were created monocortically in the tibia of each rabbit using a trephine burr with a diameter of 8mm. The implants were installed in each hole. The rabbits were divided into 4 groups: in group E, the defect was left empty; in group CGF, the defects were filled only with CGF; in group AB, the defects were filled with autogenous bone; and in group AB+CGF, the defects were filled with autogenous bone and CGF. The animals were euthanized at week 8 postimplantation. All implants from the 20 animals were fixed in 10% formalin and evaluated histomorphometrically.Results:The mean defect area was highest in group E and lowest in group CGF+AB (P<0.05). The area of the defect differed significantly between groups AB and CGF+AB (P<0.05), but not between groups CGF and E. Implant-to-bone contact was lowest in group E. In the defect areas of groups CGF, AB and CGF+AB, a small amount of new bone formed around the implant.Conclusions:In this animal model of a peri-implant bone defect, restoration was achieved using a combination of autogenous bone and CGF. Further studies are needed to determine the behavior of CGF when used in the repair of bone defects in humans.