Finite-size scaling and power law relations for dipole-quadrupole interaction on Blume-Emery-Griffiths model


ÖZKAN A., KUTLU B.

CENTRAL EUROPEAN JOURNAL OF PHYSICS, cilt.9, sa.3, ss.884-890, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 3
  • Basım Tarihi: 2011
  • Doi Numarası: 10.2478/s11534-010-0081-1
  • Dergi Adı: CENTRAL EUROPEAN JOURNAL OF PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.884-890
  • Gazi Üniversitesi Adresli: Evet

Özet

The Blume-Emery-Griffiths model with the dipole-quadrupole interaction (l = 1/j) has been simulated using a cellular automaton algorithm improved from the Creutz cellular automaton (CCA) on the face centered cubic (fcc) lattice. The finite-size scaling relations and the power laws of the order parameter (M) and the susceptibility (chi) are proposed for the dipole-quadrupole interaction (a""). The dipole-quadrupole critical exponent delta(chi) has been estimated from the data of the order parameter (M) and the susceptibility (chi). The simulations have been done in the interval 0 <= l = 1/j <= 0.01 for d = d/j = 0, k = k/j = 0 and h = H/j = 0 parameter values on a face centered cubic (fcc) lattice with periodic boundary conditions. The results indicate that the effect of the a"" parameter is similar to the external magnetic field (h). The critical exponent delta(a"") are in good agreement with the universal value (delta (h) = 5) of the external magnetic field.