European Journal of Neuroscience, cilt.60, sa.6, ss.5203-5216, 2024 (SCI-Expanded)
Recent studies have shown that a single bout of exercise has acute improvements on various forms of memory, including procedural motor learning, through mechanisms such as the plasticity-promoting effect. This study aimed to examine (1) the acute effects of timing and intensity of aerobic exercise on the acquisition and retention of motor learning in healthy adults, (2) the effect of sleep quality of the night before and after acquisition on motor learning, and (3) the acute effects of low and moderate-intensity aerobic exercise on cognitive functions. Seventy-five healthy adults were divided into five groups: Two groups performed low or moderate intensity aerobic exercise before motor practice; two groups performed low or moderate intensity aerobic exercise after motor practice; the control group only did motor practice. Low- and moderate-intensity exercises consisted of 30 min of running at 57%–63% and 64%–76% of the maximum heart rate, respectively. Motor learning was assessed using a golf putting task. The sleep quality of the night before and after the acquisition was evaluated using the Richard Campbell Sleep Questionnaire. Cognitive function was assessed before and after aerobic exercise using the Paced Auditory Serial Acquisition Task test. Results indicated that all groups demonstrated acquisition, 1-day and 7-day retention at a similar level (p > 0.05). Regression analysis revealed no significant relationship between sleep quality on the night before the experimental day and total acquisition (p > 0.05). However, a positive correlation was found between the sleep quality on the night of the experimental day and both 1-day and 7-day retention (p < 0.05). A single bout of low or moderate acute exercise did not modify motor skill acquisition and retention. Other results showed the importance of night sleep quality on the retention and proved that a single bout of moderate intensity exercise was associated with improved cognitive function.