A Dynamic Traffic Light Control Algorithm to Mitigate Traffic Congestion in Metropolitan Areas


Creative Commons License

Kumar B. R., Kumaran N., Prakash J. U., Salunkhe S. S., Venkatesan R., Shanmugam R., ...Daha Fazla

Sensors, cilt.24, sa.12, 2024 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 12
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/s24123987
  • Dergi Adı: Sensors
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: convolutional neural network (CNN), multi-queuing system, real-time traffic scenario, signal distribution, traffic flow rate
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Gazi Üniversitesi Adresli: Hayır

Özet

This paper proposes a convolutional neural network (CNN) model of the signal distribution control algorithm (SDCA) to maximize the dynamic vehicular traffic signal flow for each junction phase. The aim of the proposed algorithm is to determine the reward value and new state. It deconstructs the routing components of the current multi-directional queuing system (MDQS) architecture to identify optimal policies for every traffic scenario. Initially, the state value is divided into a function value and a parameter value. Combining these two scenarios updates the resulting optimized state value. Ultimately, an analogous criterion is developed for the current dataset. Next, the error or loss value for the present scenario is computed. Furthermore, utilizing the Deep Q-learning methodology with a quad agent enhances previous study discoveries. The recommended method outperforms all other traditional approaches in effectively optimizing traffic signal timing.