A modified test for detecting influential decision-making units in data envelopment analysis


Acarlar I., ŞAHİN TEKİN S. T., ÖRKCÜ H. H.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, vol.47, no.1, pp.129-144, 2018 (SCI-Expanded) identifier identifier

Abstract

In data analyses based on a deterministic or stochastic approach, using pre-study is very important to identify observations that are not suitable to data in general. Among such observations, those that have a high tendency to change results negatively are called influential observations. In this paper, we propose a new method to identify influential observations in Data Envelopment Analysis (DEA). Our method is a modified version of the one proposed by Pastor et al. [12]. Both methods are compared by using two well-known data sets and the outcomes are discussed. A comparative analysis indicates that our method is an effective alternative to the Pastor et al. [12] method to identify influential observations in DEA.