Journal of Medical Systems, cilt.29, sa.5, ss.501-512, 2005 (SCI-Expanded)
Many studies show that artificial hypothermia of brain in conditions of anesthesia with the rectal temperature lowered down to 33°C produces pronounced prophylactic effect protecting the brain from anoxia. Out of the methods employed now in clinical practice for reducing the oxygen consumption by the cerebral tissue, the most efficacious is craniocerebral hypothermia (CCH). It is finding even more extensive application in cardiovascular surgery, neurosurgery, neurorenimatology and many other fields of medical practice. In this study, a microcontroller-based designed human brain hypothermia system (HBHS) is designed and constructed. The system is intended for cooling and heating the brain. HBHS consists of a thermoelectric hypothermic helmet, a control and a power unit. Helmet temperature is controlled by 8-bit PIC16F877 microcontroller which is programmed using MPLAB editor. Temperature is converted to 10-bit digital and is controlled automatically by the preset values which have been already entered in the microcontroller. Calibration is controlled and the working range is tested. Temperature of helmet is controlled between -5 and +46°C by microcontroller, with the accuracy of ± 0.5°C. © 2005 Springer Science+Business Media, Inc.