RESEARCH ON CHEMICAL INTERMEDIATES, cilt.48, sa.7, ss.3189-3219, 2022 (SCI-Expanded)
Despite a significant amount of research in the field of cyclotriphosphazene chemistry, bioactivity and molecular docking studies of this class of cyclotriphosphazenes have still not been adequately studied. In this study, for bioactivity studies, tetrachlorobenzylmonospiro(N/N)cyclotriphosphazenes (4, 5 and 6) were synthesized by the reactions of hexachlorocyclotriphosphazene (N3P3Cl6; trimer; HCCP) with diamines (1, 2 and 3), respectively. Reactions of 4, 5 and 6 with excess pyrrolidine, piperidine, morpholine and 1, 4-dioxa-8-azaspiro[4.5]decane (DASD) gave the tetrapyrrolidino (7, 8 and 9), tetrapiperidino (10, 11 and 12), tetramorpholino (13, 14 and 15) and tetraDASD (16, 17 and 18) substituted benzylmonospiro(N/N) cyclotriphosphazenes. Microanalytical, spectral and crystallographic data (for 6 and 15) revealed the structures of the cyclotriphosphazenes. Antibacterial and antifungal activities of all phosphazenes against selected strains of bacteria and yeast, and pBR322 plasmid DNA cleavage activities were discussed. MIC values of 11 and 12 (78.1 and 156.3 mu M, respectively) against C. albicans are higher than the reference antibiotic Ketoconazole. Cytotoxic activities of five phosphazenes against L929 Fibroblast and DLD-1 cells were evaluated. Additionally, Density Functional Theory (DFT) calculations of 6 and 15 were performed. Molecular docking studies of 6 and 15 with DNA, endonuclease BamHI, S. aureus Dihydrofolate Reductase and E. coli DNA gyrase were presented.