Semisimple-direct-injective modules


Abyzov A., KOŞAN M. T., Truong Cong Quynh T. C. Q., Tapkin D.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.50, sa.2, ss.516-525, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 2
  • Basım Tarihi: 2021
  • Doi Numarası: 10.15672/hujms.730907
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.516-525
  • Gazi Üniversitesi Adresli: Evet

Özet

The notion of simple-direct-injective modules which are a generalization of injective modules unifies C2 and C3-modules. In the present paper, we introduce the notion of the semisimple-direct-injective module which gives a unified viewpoint of C2, C3, SSP properties and simple-direct-injective modules. It is proved that a ring R is Artinian serial with the Jacobson radical square zero if and only if every semisimple-direct-injective right R-module has the SSP and, for any family of simple injective right R-modules {S-i}(J), circle plus S-J(i) is injective. We also show that R is a right Noetherian right V-ring if and only if every right R-module has a semisimple-direct-injective envelope if and only if every right R-module has a semisimple-direct-injective cover.