Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb(-1) of root&ITs&IT = 13 TeV &ITpp&IT collision data with the ATLAS detector


Creative Commons License

Aaboud M., Aad G., Abbott B., Abdinov O., Abeloos B., Abidi S. H., ...Daha Fazla

JOURNAL OF HIGH ENERGY PHYSICS, cilt.2017, sa.9, 2017 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2017 Sayı: 9
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1007/jhep09(2017)084
  • Dergi Adı: JOURNAL OF HIGH ENERGY PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: Hadron-Hadron scattering (experiments), Supersymmetry, PARTON DISTRIBUTIONS, GLUINO PRODUCTION, SQUARK, EXTENSION, ROOT-S=13, MODELS, DECAY, MSSM, WEAK
  • Gazi Üniversitesi Adresli: Evet

Özet

A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or mu), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb(-1), is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.