A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode


Bodur O. C., Dinç S., Özmen M., Arslan F.

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, cilt.68, sa.1, ss.20-29, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 68 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1002/bab.1886
  • Dergi Adı: BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.20-29
  • Anahtar Kelimeler: acetylcholine esterase, biosensor, choline oxidase, CHOLINE OXIDASE, BIOSENSOR, POLYANILINE
  • Gazi Üniversitesi Adresli: Evet

Özet

Acetylcholine is a neurotransmitter, which is located at the intersections of the nerve and muscles in the lymph nodes of the internal organs motor systems and in various parts of the central nervous system. A decrease of acetylcholine in brain is associated with Alzheimer's disease. That is why it is an important agent for this disease. In this study, a bienzymatic biosensor system with acetylcholine esterase and choline oxidase was prepared with carbon paste electrode modified with carbon nano Dot-(3-Aminopropyl) triethoxysilane (CDs-APTES) for determination of the amount of acetylcholine. Acetylcholine esterase and choline oxidase enzymes were immobilized onto a modified carbon paste electrode by cross-linking with glutaraldehyde. Determination of acetylcholine was carried out by the oxidation of enzymatically produced H2O2 at 0.4 V versus Ag/AgCl. The effect of temperature, pH, and substrate concentration on the acetylcholine response of the prepared biosensor was investigated. In addition, the optimum CDs-APTES amount, the linear operating range of the biosensor, and the interference effect were also investigated.