Cardaria draba subspecies Shalepensis exerts in vitro and in silico inhibition of α-glucosidase, TRP1, and DLD-1 proliferation


Creative Commons License

Ortaakarsu A. B., Boğa Ö. B., KURBANOĞLU E. B.

Scientific Reports, vol.15, no.1, 2025 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 15 Issue: 1
  • Publication Date: 2025
  • Doi Number: 10.1038/s41598-025-95538-1
  • Journal Name: Scientific Reports
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Keywords: Cardaria drabaL, Colon cancer, Enzyme inhibition, Molecular docking, Molecular dynamics
  • Open Archive Collection: AVESIS Open Access Collection
  • Gazi University Affiliated: Yes

Abstract

In this study, in vitro enzyme activity assays were performed to investigate the inhibitory effects on α-glucosidase and tyrosinase-related protein 1, while in silico molecular docking, molecular dynamics, and protein dynamics analyses were performed to provide information on molecular mechanisms. According to information obtained from in silico approaches, inhibition properties are responsible for conformational changes in protein structures, occupation of the active site cleft by the dominant compounds in the extract, as well as long-term changes in protein folding due to departure from the usual motion. The IC50 values of Cardaria draba (L.) DESV. subsp. Chalepensis (L.) extract for α-glucosidase and tyrosinase-related protein 1 were determined to 1.89 ± 0.13 µg/ml and 1.53 ± 0.13 µg/ml, respectively. In addition, the IC50 value of the antiproliferative effects of the extract on DLD-1 colon cancer cells was found to be 6.9 µg/mL. Preclinical trials are warranted to validate the extract’s therapeutic potential. These findings suggest that Cardaria draba extract exhibits enzyme inhibitory and antiproliferative properties, warranting further investigation for its potential role in therapeutic interventions. Further research, particularly in vivo studies, is required to explore the potential of this extract to address DLD-1.