Performance improvement of absorption heat transformer


SÖZEN A., Yucesu H. S.

RENEWABLE ENERGY, cilt.32, sa.2, ss.267-284, 2007 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 2
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.renene.2006.01.017
  • Dergi Adı: RENEWABLE ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.267-284
  • Anahtar Kelimeler: absorption heat transformer, simulation, upgrading, solar pond, exergy, COP, SOLAR PONDS, REFRIGERATION SYSTEMS, LITHIUM BROMIDE, EXERGY ANALYSIS, WORKING FLUID, SINGLE-STAGE, EJECTOR, TEMPERATURE, DESIGN, WATER
  • Gazi Üniversitesi Adresli: Evet

Özet

In this study, a mathematical model of absorption heat transformer (AHT) operating with the aqua/ammonia was developed to simulate the performance of these systems coupled to a solar pond in order to increase the temperature of the useful heat produced by solar ponds and used a special ejector located at the absorber inlet. By the use of the ejector, the obtained absorber pressure becomes higher than the evaporator pressure and thus the system works with triple-pressure-level. The ejector has two functions: (i) aids pressure recovery from the evaporator and (ii) upgrades the mixing process and the pre-absorption by the weak solution of the ammonia coming from the evaporator. The other advantage of the system with ejector is increased absorber temperature. Therefore, pressure recovery and pre-absorption in the ejector improves the efficiency of the AHT. Under the same circumstances, when compared to an AHT with and without an ejector, the system's COP and exergetic coefficient of performance (ECOP) were improved by 14% and 30%, respectively and the circulation ratio (f) was reduced by 57% at the maximum efficiency condition. Due to the reduced circulation ratio, the system dimensions can be reduced; consequently, this decreases overall cost. The maximum upgrading of the solar pond's temperature by the AHT was obtained at 57.5 degrees C and gross temperature lift at 97.5 degrees C with coefficients of performance of about 0.5. The maximum temperature of the useful heat produced by the AHT was similar to 150 degrees C. In addition, exergy losses for each component in the system were calculated at different working temperatures and the results of both systems with and without an ejector were compared. Exergy analysis emphasised that both the losses and irreversibilities have an impact on the system performance and exergy analysis can be used to identify the less efficient components of the system. Exergy analyses also showed that the exergy loss of the absorber of AHT with ejector was higher than those of other components. (c) 2006 Elsevier Ltd. All rights reserved.