Performance of machine learning algorithms in spectroscopic ellipsometry data analysis of ZnTiO3 nanocomposite


Creative Commons License

Barkhordari A., Mashayekhi H. R., Amiri P., ÖZÇELİK S., Hanife F., Azizian-Kalandaragh Y.

Scientific Reports, cilt.14, sa.1, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41598-023-50620-4
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Gazi Üniversitesi Adresli: Evet

Özet

In this research, the optical properties of the PVP: ZnTiO3 nanocomposite are studied using the spectroscopic ellipsometry technique. The preparation procedure of the ZnTiO3 nanocomposite is explained in detail. The absorbance/transmittance, surface morphology, structural information, chemical identification, and surface topography of the ZnTiO3 nanocomposite is studied using UV–Vis spectroscopy, field-emission scanning electron microscopy, Raman spectroscopy, Fourier transform infra-red, and atomic force microscopy, respectively. The ellipsometry method is used to obtain the spectra of the real and imaginary parts of the dielectric function and refractive index in the photon energy range of 0.59–4.59 eV. Moreover, using two machine learning algorithms, namely artificial neural network and support vector regression methods, the ellipsometric parameters ψ and Δ are analyzed and compared with non-linear regression. The error and accuracy of each three methods, as well as the time required for their execution, are calculated to compare their suitability in the ellipsometric data analysis. Also, the absorption coefficient was used to determine the band gap energy of the ZnTiO3 nanocomposite, which is found to be 3.83 eV. The second-energy derivative of the dielectric function is utilized to identify six critical point energies of the prepared sample. Finally, the spectral-dependent optical loss function and optical conductivity of the ZnTiO3 nanocomposite are investigated.