Investigation of strengthened low slenderness RC column by using textile reinforced mortar strip under axial load


Mercimek Ö., Ghoroubi R., Özdemir A., Anıl Ö., Erbas Y.

ENGINEERING STRUCTURES, cilt.259, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 259
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.engstruct.2022.114191
  • Dergi Adı: ENGINEERING STRUCTURES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Compendex, Geobase, ICONDA Bibliographic, INSPEC, Metadex, DIALNET, Civil Engineering Abstracts
  • Anahtar Kelimeler: RC Column, TRM, Strengthening, Axial load, Anchor, CONCRETE COLUMNS, CFRP STRIPS, BEHAVIOR, CONFINEMENT, MODEL, BEAM, JOINTS, FRAMES
  • Gazi Üniversitesi Adresli: Evet

Özet

An experimental and numerical study was conducted to improve the critical performance of low slenderness reinforced concrete columns, such as ultimate load capacity, initial stiffness, and energy dissipation capacity, using Textile-Reinforced Mortar (TRM) strip. A total of 17 reinforced concrete columns were fabricated and tested under uni-axial compression. The effect of carbon textile type, strip width and distance, usage of carbon fiber reinforced polymer (CFRP) fan type anchors was investigated. The experimental part of the study indicated that the ultimate load capacities of reinforced concrete columns strengthened with TRM strips was increased to 1.19-1.78 times. Their initial stiffness increased to 1.01-1.99 times, and energy dissipation capacity values increased to 1.22 and 2.09 times. In addition, simulation models for the experimental specimens were created with the ABAQUS finite element software. Then the results of analyses and the experimental outputs were compared together and interpreted. Finally, using the verified FEM model, a parametric numerical study was carried out to determine the effect of the increase in the concrete compressive strength of the column on the performance of the specimens examined within the scope of the study. According to the main findings of this study, it was demonstrated that the application of the proposed TRM strips for strengthening reinforced concrete columns was a successful method.