BONE MARROW TRANSPLANTATION, cilt.29, sa.12, ss.949-956, 2002 (SCI-Expanded)
Hematopoietic macrochimerism, established by bone marrow transplantation, can be used as an approach for treating autoimmune disease and inducing transplant tolerance. In this study, we investigated whether a stable, high level of fully MHC-mismatched hematopoietic macrochimerism can be induced by using irradiation-free protocols, and whether rapamycin and T cell costimulatory blockades (anti-CD40L monoclonal antibody (mAb) and CTLA4Ig) as post-transplant treatment promote bone marrow engraftment. Donor-specific blood transfusion (DST), anti-lymphocyte serum (ALS), busulfan, and cyclophosphamide were given pretransplantation. Balb/c (H-2(d)) bone marrow cells, at a dose of 4 X 10(7), were infused into each C57BL/6 mouse (H-2(b)). Rapamycin, anti-CD40L mAb, and CTLA4Ig were then administered, either alone or in combination. Without ALS or busulfan and cyclophosphamide, macrochimerism can only rarely be induced. Donor-specific transfusion (DST) enhances induction of hematopoietic macrochimerism. Rapamycin, anti-CD40L mAb and CTLA4Ig, alone or in combination, induce a stable and high level of hematopoietic macrochimerism. In the chimeric mice, donor-derived cells were detected in all lymphohematopoietic tissues and donor-specific tolerance was induced in vitro. We conclude that a stable and high level of fully MHC-mismatched hematopoietic macrochimerism can be induced in mice after transplanting a single modest dose of bone marrow cells without irradiation. Rapamycin and T cell costimulatory blockade as post-transplant treatment promote bone marrow engraftment.