Evaluation of blast-induced ground vibration effects in a new residential zone


Dogan O., ANIL Ö., AKBAŞ S. O., KANTAR E., Erdem R. T.

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, cilt.50, ss.168-181, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.soildyn.2013.03.005
  • Dergi Adı: SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.168-181
  • Anahtar Kelimeler: Blasting, Horizontal acceleration, Finite element analysis, Damage index, DAMAGE
  • Gazi Üniversitesi Adresli: Evet

Özet

The results from an experimental blasting program that was performed at the special explosives training field of the General Directorate of Security in Ankara, where new residential blocks are planned to be constructed nearby, are presented. With the objective of estimating the blast-induced ground vibration effects on the proposed structures, various blasting parameters of nineteen surface and underground explosions were recorded in two directions at three measurement stations. Site-specific empirical relationships between peak particle velocity, the amount of explosive and the distance were developed. These relationships were used to construct a practical blasting chart, which gives the maximum amount of explosive to be used as a function of distance, for future underground and surface blasting operations in the training field. Since the use of peak particle velocity in the field of civil engineering has been limited so far, site-specific parameters were also estimated to predict the blast-induced horizontal peak ground acceleration. Then, an attempt was made to investigate the dynamic responses of four and six storey reinforced concrete structures that consist of frame and shear wall type structural systems under the measured accelerations using finite element analysis. The limitations of this approach were discussed within the context of damage estimation. (C) 2013 Elsevier Ltd. All rights reserved.