Global Existence and Uniqueness of The Inviscid Velocity-Vorticity Model of The g-Navier-Stokes Equations


Kazar Ö., Kaya M.

SAKARYA UNIVERSITY JOURNAL OF SCIENCE, cilt.26, sa.4, ss.695-702, 2022 (Hakemli Dergi) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.16984/saufenbilder.1097179
  • Dergi Adı: SAKARYA UNIVERSITY JOURNAL OF SCIENCE
  • Derginin Tarandığı İndeksler: Academic Search Premier, Business Source Elite, Business Source Premier, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.695-702
  • Gazi Üniversitesi Adresli: Evet

Özet

In this paper, we prove the global existence and uniqueness of the weak solutions to the inviscid velocity-vorticity model of the g-Navier-Stokes equations. The system is performed by entegrating the velocity-pressure system which is involved by using the rotational formulation of the nonlinearity and the vorticity equation for the g-Navier-Stokes equations without viscosity term. In this study we particularly interest the inviscid velocity-vorticity system of the g-Navier-Stokes equations over the two dimensional periodic box Ω=(0,1)^2⊂R^2.