Experimental analysis of hydrogen storage performance of a LaNi5–H2 reactor with phase change materials


ARSLAN B., İLBAŞ M., ÇELİK S.

International Journal of Hydrogen Energy, cilt.48, sa.15, ss.6010-6022, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 15
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.ijhydene.2022.11.083
  • Dergi Adı: International Journal of Hydrogen Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Communication Abstracts, Environment Index, INSPEC
  • Sayfa Sayıları: ss.6010-6022
  • Anahtar Kelimeler: Phase change material, Latent heat, Metal hydride, Hydrogen storage
  • Gazi Üniversitesi Adresli: Evet

Özet

© 2022 Hydrogen Energy Publications LLCEnergy storage, especially thermal energy storage, has an important place in terms of efficient use of energy. Systems in which phase change materials (PCMs) are used are among the thermal energy storage (TES) options, thanks to their advantages such as energy storage at almost constant temperature. The use of PCM as a TES material in the metal hydride (MH) reactor is an influential method to store the heat released by the exothermic reaction occurring in the hydrogen charging process and to recover this heat with the endothermic reaction occurring in the hydrogen discharge process. In the present study, hydrogen charge and discharge processes in a LaNi5–H2 reactor were experimentally investigated and compared with and without PCM. Therefore, a hybrid system was designed by integrating PCM around the cylindrical MH reactor filled with LaNi5 alloy. The hydration process was carried out at both constant pressure and variable pressure. The temperature changes on the reactor surface and inside the PCM were measured over time. In experiments to determine the change in the amount of hydrogen stored in MH reactors over time, it was determined that the hydrogen storage pressure and reactor design significantly affect the hydrogen charge-discharge rate. Considering the use of MH reactors in transportation vehicles such as automobiles and submarines, designing a hybrid MH-PCM storage system is promising for the development of hydrogen storage technologies and transportation technologies.