LONG TIME STABILITY OF A LINEARLY EXTRAPOLATED BLENDED BDF SCHEME FOR MULTIPHYSICS FLOWS


Cibik A. B., Eroğlu F. G., Kaya S.

INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, cilt.17, ss.24-41, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17
  • Basım Tarihi: 2020
  • Dergi Adı: INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.24-41
  • Anahtar Kelimeler: Blended BDF, long time stability, Navier-Stokes, natural convection, double-diffusive, FINITE-ELEMENT APPROXIMATION, IMPLICIT EULER SCHEME, NAVIER-STOKES PROBLEM, 2 PARTITIONED METHODS, CONVECTION
  • Gazi Üniversitesi Adresli: Evet

Özet

This paper investigates the long time stability behavior of multiphysics flow problems, namely the Navier-Stokes equations, natural convection and double-diffusive convection equations with an extrapolated blended BDF time-stepping scheme. This scheme combines the two-step BDF and three-step BDF time stepping schemes. We prove unconditional long time stability theorems for each of these flow systems. Various numerical tests are given for large time step sizes in long time intervals in order to support theoretical results.