Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum


TOPRAK İ. B., DOĞDU N., SALAMCI M. U.

Applied Sciences (Switzerland), cilt.15, sa.10, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 10
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/app15105485
  • Dergi Adı: Applied Sciences (Switzerland)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: laser powder bed fusion (LPBF), numerical simulations, process parameter optimization, pure molybdenum
  • Gazi Üniversitesi Adresli: Evet

Özet

This study presents a comprehensive numerical investigation of the Laser Powder Bed Fusion (LPBF) process for pure molybdenum, focusing on high-precision modeling and process optimization. The powder spreading behavior is simulated using the Discrete Element Method (DEM), while molten pool dynamics are analyzed through Computational Fluid Dynamics (CFD). Optimization of process parameters is performed using FLOW-3D Release 7 software in conjunction with the HEEDS-SHERPA algorithm. A total of 247 simulations are conducted to assess the effects of four critical parameters: laser power (50–400 W), scanning speed (80–300 mm/s), laser spot diameter (40–100 µm), and powder layer thickness (50–100 µm). The optimal parameter set—350 W laser power, 120 mm/s scanning speed, 50 µm spot diameter, and 50 µm layer thickness—results in an 80% laser absorption rate, a 60% reduction in micro-porosity, and over a 30% enhancement in both molten pool volume and surface area. Utilizing a fine 10 µm mesh resolution enables detailed insights into temperature gradients and phase transition behavior. The findings highlight that optimized parameter selection significantly improves the structural integrity of Mo-based components while minimizing manufacturing defects, thus offering valuable guidance for advancing industrial-scale additive manufacturing of refractory metals.