In-vivo antioxidant and therapeutic effects of ellagic acid on ischemia-reperfusion injury in skeletal muscle


Creative Commons License

DEMİRTAŞ H., ÖZER A., YİĞİT D., Dursun A. D., YIĞMAN Z., KÖSA Ç., ...Daha Fazla

Turkish Journal of Vascular Surgery, cilt.34, sa.1, ss.52-60, 2025 (Scopus) identifier

Özet

Aim: Skeletal muscle ischemia-reperfusion (IR) injury is a critical clinical issue characterized by oxidative stress, inflammation, and tissue damage, potentially leading to systemic organ dysfunction. Ellagic acid (EA), a naturally occurring polyphenolic compound, is widely recognized for its strong antioxidative, anti-inflammatory, and antiapoptotic effects demonstrated in various preclinical studies. This study sought to assess the therapeutic effects of EA in a rat model of lower extremity IR injury, focusing on histopathological and biochemical parameters. Material and Methods: 24 male Albino Wistar rats were randomly divided into four groups: Sham, EA, IR, and IR+EA. IR injury was induced by occluding the infrarenal abdominal aorta for 45 minutes, followed by 120 minutes of reperfusion. EA (40 mg/kg) was administered intraperitoneally prior to reperfusion. Left gastrocnemius muscle samples were collected for histopathological and biochemical analyses, including TOS, TAS, OSI, levels and PON-1 enzyme activity. Results: The IR group showed marked muscle injury, with a significantly higher total injury score (10.00±0.63) compared to the Sham (2.00±0.58) and EA groups (2.00±0.52) (p<0.001, both). The IR-EA group demonstrated notable improvement, with a reduced total injury score (6.17±0.54), which was also significantly lower than the IR group (p<0.001). Biochemically, TAS levels and PON-1 activity significantly decreased while TOS and OSI levels increased in the IR group compared to the sham and EA groups. In addition, EA treatment significantly increased TAS levels and PON-1 activity while reducing TOS and OSI levels in the IR-EA group compared to the IR group (p=0.039, p=0.045, p=0.045, p=0.007, respectively). Conclusion: EA effectively mitigated skeletal muscle damage induced by IR injury through its antioxidative, anti-inflammatory, and antiapoptotic mechanisms. The results suggest that EA exhibits potential effects as a therapeutic agent in managing IR-related injuries.