Proportional L-Fractional Forms of Malthusian and Verhulst Equations


YAZICI S., ÇEKİM B., Nieto J. J.

QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, cilt.24, sa.5, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 5
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s12346-025-01364-1
  • Dergi Adı: QUALITATIVE THEORY OF DYNAMICAL SYSTEMS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, DIALNET
  • Gazi Üniversitesi Adresli: Evet

Özet

In this study, we define a new fractional derivative using the normalization te rho-1 rho t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t e<^>{\frac{\rho -1}{\rho }t}$$\end{document} by means of the proportionality parameter rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}, which allows us to proportionally adjust the concept of the memory effect, one of the most powerful aspects of the fractional derivative. Then, we consider the Malthusian and Verhulst equations using this derivative and solve them using the power series method. We show that the series solutions are convergent and numerically estimate the radii of convergence of these series. We analyze the behavior of the solution series via rich numerical calculations.