Examination of compression effects on PEMFC performance by numerical and experimental analyses


Uzundurukan A., BİLGİLİ M., Devrim Y.

International Journal of Hydrogen Energy, cilt.45, sa.60, ss.35085-35096, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 60
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.ijhydene.2020.04.275
  • Dergi Adı: International Journal of Hydrogen Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chimica, Communication Abstracts, Compendex, Environment Index, INSPEC
  • Sayfa Sayıları: ss.35085-35096
  • Anahtar Kelimeler: PEMFC, Compression, MEA, Clamping plates compression, Bolt compression
  • Gazi Üniversitesi Adresli: Evet

Özet

© 2020 Hydrogen Energy Publications LLCIn the present study, the effects of compression method on Proton Exchange Membrane Fuel Cell (PEMFC) performance were investigated both numerically and experimentally. Total deformation of the components within the PEMFC was simulated by ANSYS three-dimensional finite element analysis (3D FEA). Moreover, geometrical and material properties of all components of PEMFC such as bipolar plates (BPP), membrane electrode assembly (MEA), gasket, current collector plate (CCP), screw and nut were implemented for accurate simulation of compression. In the experimental part, PEMFC tests were performed with 25 cm2 active area single cell having 3 channel parallel in series (3 PS) flow channel via PEMFC test station with H2 and air at 60 °C. The maximum power density was achieved as 0.458 W/cm2 and 0.480 W/cm2 for bolt compression and clamping plates compression, respectively. The equivalent stress values were found as 120 MPa that under 4389 N the clamping plates and 1600 MPa under bolt compression with 1.3 Nm torque. When numerical and experimental studies are examined together, it is seen that bolt compression has higher deformation and less equivalent stress than clamping plates compression.