Tensile and Flexural Behaviors of Basalt Textile Reinforced Sprayed Glass Fiber Mortar Composites


Ates A. O., Durmuş G., Ilki A.

MATERIALS, cilt.16, sa.12, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 12
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/ma16124251
  • Dergi Adı: MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: fabric-reinforced cementitious matrix, material behavior, strengthening, tensile characterization, test procedure, textile-reinforced mortar
  • Gazi Üniversitesi Adresli: Evet

Özet

The proposed study combines sprayed glass fiber-reinforced mortar and basalt textile-reinforcement to harness the favorable properties of each component to obtain a composite material that can be used for strengthening of existing structures. This includes crack resistance and a bridging effect of glass fiber-reinforced mortar and the strength provided by the basalt mesh. In terms of weight, mortars containing two different glass fiber ratios (3.5% and 5%) were designed, and tensile and flexural tests were conducted on these mortar configurations. Moreover, the tensile and flexural tests were performed on the composite configurations containing one, two, and three layers of basalt fiber textile reinforcement in addition to 3.5% glass fiber. Maximum stress, cracked and uncracked modulus of elasticity, failure mode, and average tensile stress curve results were compared to determine each system's mechanical parameters. When the glass fiber content increased from 3.5% to 5%, the composite system without basalt textiles' tensile behavior slightly improved. The increase in tensile strength of composite configurations with one, two, and three layers of basalt textile reinforcement was 28%, 21%, and 49%, respectively. As the number of basalt textile reinforcements increased, the slope of the hardening part of the curve after cracking clearly increased. Parallel to the tensile tests, four-point bending tests showed that the composite's flexural strength and deformation capacities increase as the number of basalt textile reinforcement layers increase from one to two.