Dystonia caused by ANO3 variants is due to attenuated Ca2+ influx by ORAI1


Ousingsawat J., Talbi K., Gómez-Martín H., Koy A., Fernández-Jaén A., Tekgül H., ...Daha Fazla

BMC Medicine, cilt.23, sa.1, 2025 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 23 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1186/s12916-024-03839-5
  • Dergi Adı: BMC Medicine
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CINAHL, EMBASE, MEDLINE, Directory of Open Access Journals
  • Anahtar Kelimeler: ANO3, Anoctamin 3, Ca2+ signaling, Dystonia, K+ channels, TMEM16C
  • Gazi Üniversitesi Adresli: Evet

Özet

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms. Methods: We applied electrophysiology, Ca2+ measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca2+ signals and defective activation of K+ channels in patients heterozygous for the ANO3 variants. Results: Upon expression, emptying of the endoplasmic reticulum Ca2+ store (store release) and particularly store-operated Ca2+ entry (SOCE) were strongly inhibited, leading to impaired activation of KCa3.1 (KCNN) K+ channels, but not of Na+-activated K+ channels (KNa; SLO2). The data provide evidence for a strongly impaired expression of store-operated ORAI1 Ca2+ influx channels in the plasma membrane of cells expressing ANO3 variants. Conclusions: Dysregulated Ca2+ signaling by ANO3 variants may impair the activation of K+ channels in striatal neurons of the brain, thereby causing dystonia. Furthermore, the data provide a first indication of a possible regulation of protein expression in the plasma membrane by ANO3, as has been described for other anoctamins.