Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration


Oncu S., KARAKAYA M., Dalveren Y., KARA A., Derawi M.

Sensors, cilt.24, sa.23, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 23
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/s24237776
  • Dergi Adı: Sensors
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: clustering, electronic support measures, GPU, parameter extraction, radar classification, software-defined radio
  • Gazi Üniversitesi Adresli: Evet

Özet

This paper presents a comprehensive evaluation of real-time radar classification using software-defined radio (SDR) platforms. The transition from analog to digital technologies, facilitated by SDR, has revolutionized radio systems, offering unprecedented flexibility and reconfigurability through software-based operations. This advancement complements the role of radar signal parameters, encapsulated in the pulse description words (PDWs), which play a pivotal role in electronic support measure (ESM) systems, enabling the detection and classification of threat radars. This study proposes an SDR-based radar classification system that achieves real-time operation with enhanced processing speed. Employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm as a robust classifier, the system harnesses Graphical Processing Unit (GPU) parallelization for efficient radio frequency (RF) parameter extraction. The experimental results highlight the efficiency of this approach, demonstrating a notable improvement in processing speed while operating at a sampling rate of up to 200 MSps and achieving an accuracy of 89.7% for real-time radar classification.