Decreasing unpalatable flavonoid components in Citrus: the effect of transformation construct


Koca U., Berhow M. A. , Febres V. J. , Champ K. I. , Carrillo-Mendoza O., Moore G. A.

PHYSIOLOGIA PLANTARUM, cilt.137, sa.2, ss.101-114, 2009 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 137 Konu: 2
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1111/j.1399-3054.2009.01264.x
  • Dergi Adı: PHYSIOLOGIA PLANTARUM
  • Sayfa Sayıları: ss.101-114

Özet

Citrus species accumulate large quantities of flavanone glycosides in their leaves and fruit. The physiological role(s) of these compounds in citrus plants are unknown, but they have been documented to benefit human health upon consumption. Flavanone rutinosides are tasteless, whereas flavanone neohesperidosides, such as naringin, give a bitter taste to fruit and fruit juice products, reducing their palatability. In an effort to alter the types and levels of flavanone neohesperidosides in citrus, an Agrobacterium-mediated genetic transformation approach was employed. Citrus paradisi Macf. (grapefruit) epicotyl stem segments were transformed with sense (S) and antisense (AS) constructs of the target genes chalcone synthase (CHS) and chalcone isomerase (CHI), whose products catalyze the first two steps in the flavonoid biosynthetic pathway. Transformation with each of the individual constructs led to a different and unpredictable combination of viability, phenotypic change, transgene steady-state expression and alteration in flavonoid content in the resulting transgenic plants. These qualities were consistent within the transgenic plants obtained using any particular construct. Transgenic plants with decreased leaf naringin levels were obtained, particularly when the CHS-AS constructs were employed.