APPLIED ERGONOMICS, cilt.111, 2023 (SCI-Expanded)
The main objective of this study was to examine the presence of chaos in the EEG recordings of brain activity under simulated unmanned ground vehicle visual detection scenarios with different levels of task difficulty. One hundred and fifty people participated in the experiment and completed four visual detection task scenarios: (1) change detection, (2) a threat detection task, (3) a dual-task with different change detection task rates, and (4) a dual-task with different threat detection task rates. We used the largest Lyapunov exponent and correlation dimension of the EEG data and performed 0-1 tests on the EEG data. The results revealed a change in the level of nonlinearity in the EEG data corresponding to different levels of cognitive task difficulty. The differences in EEG nonlinearity measures among the studied levels of task difficulty, as well as between a single task scenario and a dual-task scenario, have also been assessed. The results increase our understanding of the nature of unmanned systems' operational requirements.