Risk assessment of submarine pipelines: A case study in Turkey


Durap A., Balas C. E.

OCEAN ENGINEERING, cilt.261, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 261
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.oceaneng.2022.112079
  • Dergi Adı: OCEAN ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Computer & Applied Sciences, Environment Index, ICONDA Bibliographic, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Sensitivity study, Risk assessment, Submarine pipeline design, Monte Carlo (MC) simulation, Random variables, Limit state functions, Reliability, NUMERICAL-MODEL, RELIABILITY, STABILITY, OIL
  • Gazi Üniversitesi Adresli: Evet

Özet

The risk assessment of submarine pipeline is carried out considering vertical and horizontal displacements under hydrodynamic forces. The stability of the pipeline is assessed according to limit-state functions using Monte Carlo (MC) simulation. The effects of subsea topography, hydrodynamic loads of waves and currents, pipe-soil inter-action, and characteristics of hazardous materials carried by the pipeline were examined. The failure probability obtained by the MC simulation was defined by the exceedance probability of the displacement limit state. The novel part of this paper is the MC simulation which is coupled with a 3-D hydrodynamic numerical model (Hydrotam-3D) developed by Balas (Balas and Ozhan, 2000). The effects of pipe-soil interactions and environ-mental parameters such as wave-induced currents can be obtained by this model coupling. The most important parameters that affect the results of the simulations are obtained. Hydrodynamic loads that depend on the combined actions of waves and currents are obtained by the hydrodynamic numerical model (Hydrotam-3D) and they are used in the MC simulation, to increase the reliability of the pipeline design.